2007年4月30日月曜日

予想レンジ(07/04/30 7:55)

2007/04/30 07:55予想レンジストップロスオーダー
通貨ペア前日終値下値上値戦略下値上値
USD/JPY119.4700118.9968120.0232118.5042120.5159
EUR/USD1.36551.36131.37181.35631.3768
EUR/JPY163.1700162.8053163.9316162.2647164.4722
GBP/USD1.99831.99172.00571.98492.0125
GBP/JPY238.7700238.1020239.9018237.2382240.7656
AUD/USD0.83040.82550.83480.82110.8392
AUD/JPY99.200098.787499.676498.3607100.1032
CHF/USD0.82970.82600.83360.82230.8373
CHF/JPY99.110098.840599.536998.506399.8712
EGP/USD0.17630.17620.17650.17610.1766
EGB/JPY21.060020.985321.171420.895921.2607
JOD/USD1.41281.41231.41331.41181.4138
JOD/JPY168.7900168.1306169.6643167.3945170.4005
QAR/USD0.27470.27460.27470.27460.2748
QAR/JPY32.820032.694232.987332.553633.1280
SAR/USD0.26680.26670.26690.26670.2669
SAR/JPY31.880031.764732.040331.632432.1725
TND/USD0.73980.73920.74040.73870.7410
TND/JPY88.380088.073088.808487.720189.1614
NZD/USD0.74270.73890.74670.73520.7505

2007年4月27日金曜日

予想レンジ(07/04/27 11:15)

2007/04/27 11:14予想レンジストップロスオーダー
通貨ペア前日終値下値上値戦略下値上値
USD/JPY119.5300119.0734120.0751118.5926120.5559
EUR/USD1.35931.35461.36471.34971.3696
EUR/JPY162.5000161.9873163.3203161.3474163.9602
GBP/USD1.99041.98331.99761.97642.0045
GBP/JPY237.9600237.2608239.0086236.4218239.8476
AUD/USD0.82630.82190.83090.81760.8352
AUD/JPY98.760098.305799.288797.833899.7605
CHF/USD0.82730.82410.83150.82060.8350
CHF/JPY98.890098.536699.424798.110399.8510
EGP/USD0.17630.17620.17640.17610.1765
EGB/JPY21.070020.994521.163020.913621.2439
JOD/USD1.41281.41211.41351.41151.4141
JOD/JPY168.8800168.2761169.5908167.6450170.2219
QAR/USD0.27470.27460.27470.27460.2748
QAR/JPY32.840032.721332.978432.597833.1018
SAR/USD0.26670.26660.26680.26650.2668
SAR/JPY31.870031.756932.000731.639932.1177
TND/USD0.73980.73930.74070.73860.7413
TND/JPY88.420088.111388.825487.768689.1681
NZD/USD0.73860.73500.74290.73130.7466

2007年4月26日木曜日

予想レンジ(07/04/26 11:50)

2007/04/26前終値下値上値戦略
USD/JPY118.5000118.1003118.9127
EUR/USD1.36521.36131.3705
EUR/JPY161.7800161.2501162.5238
GBP/USD2.00491.99982.0110
GBP/JPY237.5900236.8042238.5762
AUD/USD0.83320.82920.8376
AUD/JPY98.750098.266999.2811
CHF/USD0.83150.82860.8353
CHF/JPY98.520098.139999.0075
EGP/USD0.17630.17620.1764
EGB/JPY20.890020.825520.9595
JOD/USD1.41261.41191.4133
JOD/JPY167.4000166.8848167.9133
QAR/USD0.27480.27480.2748
QAR/JPY32.560032.458932.6606
SAR/USD0.26690.26680.2670
SAR/JPY31.620031.522531.7188
TND/USD0.73980.73930.7405
TND/JPY87.660087.379587.9591
NZD/USD0.74570.74280.7498

2007年4月25日水曜日

予想レンジ(07/04/25 11:55)

usdjpy 118.1184 118.9834
eurusd 1.3593 1.3689
eurjpy 161.0726 162.4029
gbpusd 1.9974 2.0087
gbpjpy 236.5823 238.4249
audusd 0.8254 0.8335
audjpy 97.8948 98.8593
nzdusd 0.7405 0.7475

2007年4月24日火曜日

予想レンジ(07/04/24 13:50)


usdjpy 117.8948 118.8849
eurusd 1.3540 1.3633
eurjpy 160.1690 161.4961
gbpusd 1.9952 2.0095
gbpjpy 236.1250 238.0101

2007年4月23日月曜日

2007年4月19日木曜日

相対的購買力平価(USD/JPY)



解析条件
(S_m - S_n)/S_n = (PJ_m - PJ_n)/PJ_n - (PU_m - PU_n)/PU_n
m = n+1
日本の物価指数(PJ) : 企業物価指数 (CGPI Corporate Goods Price Index)
: 日消費者物価指数(CPI Consumer Price Index)
海外の物価指数(PU) : 米生産者物価指数 (PPI Producer Price Index)
: 米消費者物価指数 (CPI Consumer Price Index)
基準年 : 1973 (1ドル = 265円)

年/月 実現 予測(CGPI,PPI) 予測(CPI)
2000/01 106.90 138.36 179.11
2001/01 116.38 123.27 171.74
2002/01 132.94 130.02 167.33
2003/01 119.21 121.79 162.34
2004/01 105.88 116.30 158.64
2005/01 103.58 110.08 154.35
2006/01 117.18 103.27 147.99
2007/01 121.34 105.52 144.90

2007年4月18日水曜日

回帰分析による相対的購買力平価 2(USD/JPY)



解析条件
相対的購買力平価=基準時点の為替相場×日本の物価指数÷海外の物価指数
日本の物価指数:日消費者物価指数 (CPI Consumer Price Index)
海外の物価指数: 米消費者物価指数 (CPI Consumer Price Index)
基準年 : 1973(CPI(日) = CPI(米) = 100)

年/月 実現 予測
2000/01 106.90 120.35
2001/01 116.38 113.51
2002/01 132.94 109.36
2003/01 119.21 104.78
2004/01 105.88 101.41
2005/01 103.58 97.57
2006/01 117.18 92.02
2007/01 121.34 89.31

2007年4月17日火曜日

回帰分析による相対的購買力平価(USD/JPY)



解析条件
相対的購買力平価=基準時点の為替相場×日本の物価指数÷海外の物価指数
日本の物価指数 :企業物価指数(CGPI Corporate Goods Price Index)
海外の物価指数 :米生産者物価指数(PPI Producer Price Index)
基準年 :1973(CGPI = PPI = 100)

年/月 実現 予測
00/01 106.90 122.60
01/01 116.38 107.58
02/01 132.94 115.61
03/01 119.21 107.05
04/01 105.88 101.35
05/01 103.58 95.08
06/01 117.18 88.42
07/01 121.34 90.83
USD/JPYは円安過ぎ?

2007年4月14日土曜日

サイコロによるベルヌイ試行



%15個のサイコロを同時に投げる試行を100000回行うときに,
%1の目が出る分布
M = 100000;% M回のベルヌイ試行
N = 15;% N個のサイコロ
x = unidrnd(6,M,N);% 1-6の離散一様分布からの乱数のMxN配列
one = (x==1); % 1の目が出る回数
hist(sum(one'),0:N);
xlim([-1 11]);
grid on
print('-dpng','-r80','saikoro.png');

2007年4月13日金曜日

モンテカルロ法によるPIの推定(ビフォンの問題)


%ビフォンの問題
No = 100;
D = 0.2;
L = 0.1;
line = L/2:D:1-L/2
for j=1:No
N = j*100;
y = rand(N,1);
theta = rand(N,1)*pi/2;
y1 = y + L/2*cos(theta);
y2 = y - L/2*cos(theta);
s = 0;
for i=1:length(line)
s = s + sum( (line(i) >= y1) == (line(i) <= y2) );
end
%
% p = 2*L/(pi*D)
%
p = s/N
PI(j) = 2*L/(D*p);
NS(j) = N;
end

hold on;
plot(NS,PI,'.k');
plot(NS,ones(No,1)*pi,'--r');
title('ビフォンの問題');
xlabel('繰り返し回数');
ylabel('\piの推定');
grid on;
hold off;
print('-dpng','-r80','pi_buffo.png');

2007年4月12日木曜日

モンテカルロ法によるPIの推定


%モンテカルロ法によるPIの推定
No = 100;
for i=1:No
N = 100*i;
x = rand(N,1); %一様分布の擬似乱数
y = rand(N,1); %一様分布の擬似乱数
r = x.^2+y.^2;
NS(i) = N;
PI(i) = 4*sum(r<1)/N;
end
r = 1;
c = 2;
subplot(r,c,1);
hold on;
plot(NS,PI,'.k');
plot(NS,ones(No,1)*pi,'--r');
xlabel('繰り返し回数');
ylabel('\piの推定');
grid on;
hold off;
subplot(r,c,2);
hold on;
t = 0:0.01:pi/2;
rx = cos(t);
ry = sin(t);
plot(rand(No*100,1),rand(No*100,1),'.k');
plot(rx,ry,'r');
grid on;
hold off;
print('-dpng','-r80','pi_mento.png');

2007年4月10日火曜日

対応なしのt検定:2 標本の平均値の差の検定

%MATLABの場合
echo on
N1 = 20;
N2 = 30;
x = rand(N1,1); % 標本1の一様分布の擬似乱数
x_mea = mean(x); % 標本1の平均値
disp(x_mea);
0.5539
x_std = std(x); % 標本1の不偏標準偏差
disp(x_std);
0.3199
y = rand(N2,1); % 標本2の一様分布の擬似乱数
y_mea = mean(y); % 標本2の平均値
disp(y_mea);
0.5384
y_std = std(y); % 標本2の不偏標準偏差
disp(y_std);
0.2955
%帰無仮説: x_mea(標本1の平均値)は,y_mea(標本1の平均値)である
%対立仮説: x_mea(標本1の平均値)は,y_mea(標本1の平均値)ではない
%両側5%有意水準でttest2を実行する
%2つの独立な標本が平均の等しい分布
[h,p,ci,stats] = ttest2(x,y); %共同(pooled)または共同ではない(unpooled)分散をもつ2標本T-検定
str = sprintf('h = %1.2f, p = %f, ci = [%f,%f]',h,p,ci(1),ci(2));
%h = 0 -> 帰無仮説は、棄却しない。つまり、x_mea(標本1の平均値)は,x_mea(標本2の平均値)である
disp(str);
h = 0.00, p = 0.861089, ci = [-0.161731,0.192748]
disp(stats);
tstat: 0.1759
df: 48
sd: 0.3054
disp(stats.sd);
0.3054
%2つの標本が、未知、または等しくない分散
[h,p,ci,stats] = ttest2(x,y,[],[],'unequal'); %共同(pooled)または共同ではない(unpooled)分散をもつ2標本T-検定
str = sprintf('h = %1.2f, p = %f, ci = [%f,%f]',h,p,ci(1),ci(2));
%h = 0 -> 帰無仮説は、棄却しない。つまり、x_mea(標本1の平均値)は,x_mea(標本2の平均値)である
disp(str);
h = 0.00, p = 0.863469, ci = [-0.165760,0.196777]
disp(stats);
tstat: 0.1731
df: 38.5863
sd: [2x1 double]
disp(stats.sd);
0.3199
0.2955

対応ありのt検定:2 標本の平均値の差の検定

%MATLABの場合
echo on
N = 20;
x = rand(N,1); % 標本1の一様分布の擬似乱数
x_mea = mean(x); % 標本1の平均値
disp(x_mea);
0.5653
x_std = std(x); % 標本1の不偏標準偏差
disp(x_std);
0.2773
y = rand(N,1); % 標本2の一様分布の擬似乱数
y_mea = mean(y); % 標本2の平均値
disp(y_mea);
0.4351
y_std = std(y); % 標本2の不偏標準偏差
disp(y_std);
0.1968
d = x - y;
d_mea = mean(d);
disp(d_mea);
0.1301
%帰無仮説: x_mea(標本1の平均値)は,y_mea(標本1の平均値)である
%対立仮説: x_mea(標本1の平均値)は,y_mea(標本1の平均値)ではない
%両側5%有意水準でttestを実行する
[h,p,ci,stats] = ttest(d,0); %1標本と対標本T-検定
str = sprintf('h = %1.2f, p = %f, ci = [%f,%f]',h,p,ci(1),ci(2));
%h = 0 -> 帰無仮説は、棄却しない。つまり、x_mea(標本1の平均値)は,x_mea(標本2の平均値)である
disp(str);
h = 0.00, p = 0.120141, ci = [-0.037243,0.297517]
disp(stats);
tstat: 1.6273
df: 19
sd: 0.3576

母分散の検定:母平均が既知・未知

%MATLABの場合
echo on
N = 10000;
data = rand(N,1); % 母集団の一様分布の擬似乱数
d_mea = mean(data); % 母集団の平均値
disp(d_mea);
0.4990
d_std = std(data,1);
disp(d_std);
0.2903
SN = 20;
sdata = rand(SN,1); % 標本の一様分布の擬似乱数
s_mea = mean(sdata); % 標本の平均値
disp(s_mea);
0.5670
s_std = std(sdata); % 標本の不偏標準偏差
disp(s_std);
0.2542
%帰無仮説: s_std(標本の不偏標準偏差)は,d_std(母集団の標準偏差)である
%対立仮説: s_std(標本の不偏標準偏差)は,d_std(母集団の標準偏差)ではない
%母平均が既知
%http://www.cybernet.co.jp/matlab/library/library/file/T/chi2test_var.m
[h,p,ci,stats]=chi2test_var(sdata,d_std^2,d_mea);
str = sprintf('h = %1.2f, p = %f, ci = [%f,%f]',h,p,ci(1),ci(2));
%h = 0 -> 帰無仮説は、棄却しない。つまり、s_std(標本の不偏標準偏差)は,d_std(母集団の標準偏差)である
disp(str);
h = 0.00, p = 0.526566, ci = [0.038656,0.137721]
disp(stats);
chi2stat: 15.6726
df: 20
%母平均が未知
[h,p,ci,stats]=chi2test_var(sdata,d_std^2,[]);
str = sprintf('h = %1.2f, p = %f, ci = [%f,%f]',h,p,ci(1),ci(2));
%h = 0 -> 帰無仮説は、棄却しない。つまり、s_std(標本の不偏標準偏差)は,d_std(母集団の標準偏差)である
disp(str);
h = 0.00, p = 0.501376, ci = [0.037385,0.137899]
disp(stats);
chi2stat: 14.5732
df: 19

2007年4月9日月曜日

母平均の検定( t検定 ):母集団の平均値が既知,分散が未知

%MATLABの場合
echo on
N = 10000;
data = rand(N,1); % 母集団の一様分布の擬似乱数
d_mea = mean(data); % 母集団の平均値
disp(d_mea);
0.4975

SN = 20;
sdata = rand(SN,1); % 標本の一様分布の擬似乱数
s_mea = mean(sdata); % 標本の平均値
%帰無仮説: s_mea(標本の平均値)は,d_mea(母集団の平均値)である
%対立仮説: s_mea(標本の平均値)は,d_mea(母集団の平均値)ではない
disp(s_mea);
0.4303

s_std = std(sdata); % 標本の不偏標準偏差
disp(s_std);
0.3290

%両側5%有意水準でztestを実行する
[h,p,ci,stats] = ttest(sdata,d_mea); %1標本と対標本T-検定
str = sprintf('h = %1.2f, p = %f, ci = [%f,%f]',h,p,ci(1),ci(2));
%h = 0 -> 帰無仮説は、棄却しない。つまり、s_mea(標本の平均値)は,d_mea(母集団の平均値)である
disp(str);
h = 0.00, p = 0.372482, ci = [0.276294,0.584258]
disp(stats);
tstat: -0.9134
df: 19
sd: 0.3290

母平均の検定( Z検定 ):母集団の平均値と分散が既知

%MATLABの場合
echo on
N = 10000;
data = rand(N,1); % 母集団の一様分布の擬似乱数
d_mea = mean(data); % 母集団の平均値
disp(d_mea);
0.4950

d_std = std(data,1); % 母集団の偏標準偏差
disp(d_std);
0.2877

SN = 20;
sdata = rand(SN,1); % 標本の一様分布の擬似乱数
s_mea = mean(sdata); % 標本の平均値
%帰無仮説: s_mea(標本の平均値)は,d_mea(母集団の平均値)である
%対立仮説: s_mea(標本の平均値)は,d_mea(母集団の平均値)ではない
disp(s_mea);
0.4455

s_std = std(sdata); % 標本の不偏標準偏差
disp(s_std);
0.2397

%両側5%有意水準でztestを実行する
[h,p,ci,zval] = ztest(sdata,d_mea,d_std); %1標本Z-検定
str = sprintf('h = %1.2f, p = %f, ci = [%f,%f], zval = %f',h,p,ci(1),ci(2),zval);
%h = 0 -> 帰無仮説は、棄却しない。つまり、s_mea(標本の平均値)は,d_mea(母集団の平均値)である
disp(str);
h = 0.00, p = 0.442067, ci = [0.319444,0.571654], zval = -0.768707

データの不偏分散,不偏標準偏差

> #統計R解析の場合
> data <- runif(10000) #一様乱数を発生させる関数( 0.0 - 1.0 ) > d_var <- var(data) # 不偏分散 > d_var
[1] 0.08373053
> d_sd <- sd(data) # 不偏標準偏差 > d_sd
[1] 0.2893623
>

%MATLABの場合
echo on
N = 10000;
data = rand(N,1); % 一様分布の擬似乱数
d_var = var(data); % 不偏分散
disp(d_var);
0.0842
d_std = std(data); % 不偏標準偏差
disp(d_std);
0.2901

2007年4月8日日曜日

データの代表値

> #Rの場合
> data <- runif(10000) #一様乱数を発生させる関数( 0.0 - 1.0 ) > le <- length(data) # > le[1] 10000> mea <- mean(data) #平均値( mean ) > mea[1] 0.4992161
> med <- median(data) #中央値( median ) > med[1] 0.4970672
> ran <- range(data) #範囲( range ) > ran[1] 0.0001207402 0.9997703242

%MATLABの場合
echo on
data = rand(1000,1); %一様分布の擬似乱数
len = length(data); %ベクトルの長さ
disp(len);
1000
mea = mean(data); %配列の平均値
disp(mea);
0.4925
med = median(data); %配列の中央値
disp(med);
0.4915

2007年4月2日月曜日